Searching for Electron Neutrino Appearance at ANL

Mayly Sanchez Argonne/Iowa State

Ve appearance in MINOS

- Produce a high intensity beam of muon neutrinos at Fermilab.
- Measure background at the Near Detector and use it to predict the Far Detector spectrum.
- If v_{μ} oscillate to v_{e} , we will observe an excess over the predicted background in the data at the Far Detector in Soudan.

Main Injector Neutrino Oscillation Search

MINOS Running Status

Run II data analyzed, getting ready for Run III data

Run I+II - $3.25 \times 10^{20} \text{ POT}$ -> Run I+II+III - $7.60 \times 10^{20} \text{ POT}$

Searching for θ_{13} in MINOS (

• The probability of ν_e appearance in a ν_μ beam:

$$A \equiv \frac{G_f n_e L}{\sqrt{2}\Delta} \approx \frac{E}{11 \text{ GeV}}$$

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} \qquad \Delta \equiv \frac{\Delta m_{31}^{2} L}{4E}$$

$$+2\alpha \sin \theta_{13} \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos \Delta$$

$$-2\alpha \sin \theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin \Delta$$

- Searching for v_e events in MINOS, we can access $\sin^2(2\theta_{13})$. & NOvA
- Probability depends not only on θ_{13} but also on δ_{CP} . For large θ_{13} , a measurements could be possible.
- * Probability is enhanced or suppressed due to matter effects which depend on the mass hierarchy i.e. the sign of $\Delta m_{31}^2 \sim \Delta m_{32}^2$ as well as neutrino

vs anti-neutrino running.

* A 30% effect in NOvA, compared to 11% in T2K

Ve appearance in MINOS

- Select v_e events by finding electron candidates in the MINOS Detectors.
- Measure the background from events passing v_e selection in the Near Detector.
 - Separate the main background components NC, ν_{μ} CC and beam ν_{e} CC since they extrapolate differently.
- Extrapolate each background type to the Far Detector taking into account v_{μ} to v_{τ} oscillations.
- Look for an excess of v_e events in the Far Detector data. Cut and count events.
 - + Measure $\sin^2(2\theta_{13})$!

Ve-selected Far Detector Data

We observe a total of 35 events and expect
 27±5(stat)±2(sys) background events for 3.14 x 10²⁰ POT.

• Data outside signal region in Far Detector: muon removed and below signal region samples. Both consistent within 1-2 σ .

MINOS 90% CL in $\sin^2 2\theta_{13}$

Fitting the oscillation hypothesis to our data

- Plot shows 90% CL limits in δ_{CP} vs. $\sin^2 2\theta_{13}$
 - shown at the MINOS best fit value for Δm^2_{32} and $\sin^2 2\theta_{23}$.
 - for both mass hierarchies
- A Feldman-Cousins method was used.
- Results are consistent with a secondary selection and background separation method.

MINOS contribution to the global fits

- Recent global fit to the world data by Fogli et al. (arxiv0905.3549).
- $\sin^2(2\theta_{13})=0$ disfavored at 2 σ .
- Central value for $\sin^2(2\theta_{13}) = 0.08$ (or $\sin^2(\theta_{13}) = 0.02$).

Future 90% CL contours

 $7.0 \times 10^{20} \text{ POT}$

Future measurement if data excess persists.

Future limit if excess cancels with more data.

We have doubled the data in before the shutdown: Expect next results with 7.6 x 10²⁰ POT!

ve MINOS contributions and prospects at ANL

- M. Sanchez : Co-leader of the v_e appearance analysis group in MINOS ('04-'09). Co-author of the paper being submitted to PRL as we speak.
 - X. Huang: Important contributions to the analysis, in particular studies on the intensity systematic.
 - M. Betancourt: Added a fundamental cut to the analysis as a graduate summer student. Now at UMN.
- New v_e appearance analysis will use twice as much data and requires better understanding of systematics.
 - X. Huang: Calibration systematics, signal efficiency systematics. Analysis file production.
 - S. Budd: Beam systematics, including the understanding flux differences in the new data and MC and beam ν_e CC.

NOvA in a nutshell

- Use existing high intensity beam of muon neutrinos at Fermilab.
- Construct two detectors, bigger detector off the main axis of the beam.
 - Location reduces background for the search.
- If neutrinos oscillate, electron neutrinos are observed at the Far Detector in Ash River, 810 km away.

2nd generation
← long baseline →

Electrons and neutral pions

Mayly Sanchez - ISU

NOvA (after)

NOvA is designed to search for electrons.

ANL DOE Site Visit - Sept. 23-24, 2009

Integration Prototype Near Detector

- Full Near Detector will be placed on the surface outside of the MINOS building at 107 mrad off-axis from the NuMI beam, dominated by kaon decays.
- Neutrino data will be available to validate reconstruction and simulations in 2010!
- Cross-section measurements could be interesting!

NOvA sensitivity for θ_{13}

- NOvA is sensitive to electron neutrino appearance down by an order of magnitude at 90% CL.
- Reach is for 3 years of running v_{μ} and \overline{v}_{μ} .
- Note contours for different beam upgrades.

Is the mixing maximal?

Sensitivity on $\sin^2 2\theta_{23}$

If combined with Double Chooz/Daya Bay it can break the ambiguity in θ_{23} .

- NOvA's narrow band beam centered at the peak of the oscillation, allows for a 1% disappearance measurement.
- Improve one order of magnitude in $\sin^2 2\theta_{23}$.

NOvA's physics reach

Assuming 700 kW beam

- Do interpret the dates with the appropriate amount of salt:
- Plots for data taken not analyses published.
- Schedules always change.
- If sin²2θ₁₃ high,
 NOvA reaches it to make precision measurement.

What if the mixing is large?

 $\sin^2 2\theta_{13} = 0.08$

- NOvA can provide information about δ_{CP} on its own.
- T2K+Daya Bay can contribute.
- All other
 experiments are
 combined for the
 world numbers.
- Just by starting NOvA you cover half the δ_{CP} space.

What if the mixing is small?

 $\sin^2 2\theta_{13} = 0.01$

The addition of NOvA data pushes World limit on $\sin^2 2\theta_{13}$ past 99% CL.

- NOvA can provide information about δ_{CP} on its own.
 - T2K+Daya Bay can contribute.
- All other experiments need to be combined for the world numbers.
- Just by starting nova you cover half the δ_{CP} space.

Resolving the mass hierarchy

 $\sin^2 2\theta_{13} = 0.08$

- NOvA can resolve the mass hierarchy on its own.
- T2K+Daya Bay +DChooz+NOvA create the larger exclusion.

Far Detector site

Aerial view on August 25

Looking South Ash River, MN

- The whole building will contracted.
- Accelerating procurement of materials:
 - PVC extrusions.
 - Wavelength-shifting.
 fibers.
 - APDs.
 - Kicker parts.

Far Detector site

Aerial view on August 25

Looking South Ash River, MN

- The whole building will contracted.
- Accelerating procurement of materials:
 - PVC extrusions.
 - Wavelength-shifting.
 fibers.
 - APDs.
 - Kicker parts.

NOvA role and prospects at ANL

- M. Sanchez: NOvA is offline software coordinator. Main goal is to get simulations and reconstruction ready for the IPND. Some analyses possible with these data.
- S. Budd: Beam simulations, in particular interface to the GENIE flux driver. Interface to MINOS beam monitoring and systematics.
- X. Huang: Simulations production and build new GEANT4 interface. Stopping muon calibration.
- Both postdocs will be be involved in IPND commissioning and analysis of IPND data.

LBNE no logo

LBNE in a nutshell

- Redirect and intensify your beam of neutrinos at Fermilab.
- Construct even bigger detector farther away this time on axis:
 - Default is 3 x 100 kton Water Cerenkov detectors.
- If neutrinos oscillate, electron neutrinos are observed at the Far Detector in Homestake, 1300 km away.

3rd generation ←long baseline→

LBNE Physics Reach

- Assuming:
 - 2.3 MW wide beam aimed at a 300 kton Water Cerenkov or a 50 kton Liquid Argon TPC,
 - 3 years of running for neutrino and 3 years for anti-neutrinos.
- For large θ_{13} , measure:

 $sin^22\theta^{}_{\scriptscriptstyle 13}$ to ~5% and $\delta^{}_{\scriptscriptstyle cp}$ to ~15°

• Sensitivities at 3 sigma:

$\sin^2 2\theta_{13} >$		
$\sin^2 2\theta_{13} \neq 0$	0.004	(all δ_{cp})
sign(Δm² ₃₁)	0.014	(all δ_{cp})
CP violation	0.012	$(50\% \delta_{cp})$

Large-Area Fast Photosensors for LBNE

- Main interest to explore new approaches to Water Cerenkov.
- Goal is to improve background rejection and vertex resolution using largearea/fast timing photosensors being designed at ANL.
- Contributing to the development of the Water Cerenkov simulations as they are being worked on.

LBNE prospects and plans at ANL

- M. Sanchez: Helping establish computing infrastructure. Member of NuComp.
- M. Wetstein, M. Sanchez:
 - Joined the LBNE Water Cerenkov simulation group.
 - Developing toy MC to test parameter space of design parameters and select best avenues for improvement.
 - Initial goal is to provide feedback to hardware design group.
- Effort needs to grow in FTE. Collaborating with UCDavis/UChicago.

Summary

- ANL's continuing effort in searching for electron neutrino appearance within the US long baseline neutrino program:
 - MINOS continue to contribute to the ν_e appearance analysis.
 - NOvA prepare all the tools for the IPND data analysis. Participate in the commissioning of the IPND. Analyze data.
 - LBNE contribute to the simulations work. Study application of new photosensors to improve physics in the Water Cerenkov detector.

Backup slides

MINOS recent results

study "atmospheric" neutrino oscillation parameters

PRL **101** 131802 (2008)

PRL **101** 221804 (2008)

Mayly Sanchez - ANL/ISU

✓ Study v_{μ} disappearance as a function of energy:

✓ Precision measurements of Δm^2_{32} and $\sin^2(2\theta_{23})$.

$$|\Delta m^2_{32}| = 2.43 \pm 0.13 \times 10^{-3} \text{ eV}^2 \text{ (68\% CL)}$$

 $\sin^2 2\theta_{23} > 0.90 \text{ (90\% CL)}$
 $\chi^2/\text{ndf}=90/97$

- ✓ Mixing to sterile neutrinos at $\Delta m^2_{34} \sim \Delta m^2_{32}$:
 - ✓ Fraction of neutrinos that oscillate into the sterile state.

Assuming no electron neutrino appearance: $f_s = 0.28^{+0.25}_{-0.28} \text{(stat.+syst.)}$ $f_s < 0.68 \text{ (90\% CL)}$

The MINOS detectors

- To first order functionally identical: Near and Far detectors
- 1 inch thick octogonal steel planes, alternating with planes of 4.1cm x 1cm scintillator strips, up to 8m long.
 - Near: ~ 1kton, 283 steel squashed octagons. Partially instrumented. 153 scintillator planes. Requires faster readout.
 - Far: 5.4 kton, 486 (8m/octagon) fully instrumented planes.

ANL DOE Site Visit - Sept. 23-24, 2009

The NOvA Detectors

- 14 kton Detector (~3x MINOS).
- >70% active detector.
- Plastic cells filled with scintillating mineral oil.
- Each plane just 0.15 X₀. Great for electrons (in MINOS 1.44 X₀).
- Cells are 3.9 x 6.0 cm.

Mayly Sanchez - ANL/ISU

ANL DOE Site Visit - Sept. 23-24, 2009

The Near Detector and the Integration Prototype Near Detector

- Test running with the Near Detector placed on the surface outside of the MINOS building.
 - Start taking data Spring 2010.
- By the Fall 2011, it will be moved into the MINOS access tunnel for physics data-taking at 14 mrad just like the Far Detector.

222 tons total mass 125 tons active volume 23 tons fiducial volumen

Proposed detector technology

- Baseline is Water Cerenkov detector.
- Initial detector 300 kton in 3 modules of 100 kton fiducial each.
- Cylinder of 50-60 m in diameter and height.
- Depth 4200 mwe.
- PMT coverage 25%, 10-12 inch PMT.
- Cost ~115 M/module

> 50 m

The NuMI Beam

- NuMI is primarily a v_{μ} beam.
 - 1.3% of v_e contamination from pion and kaon decays.
- Neutrino spectrum changes with target position with respect to focusing horns.
 - We use v_{μ} CC events in ND to constrain flux.
- Region of interest dominated by events from secondary muon decays,
 - Constrained by v_{μ} CC spectra.
- Uncertainties on the beam v_e flux in the region of interest are ~10%.

NeUtrinos from the Main Injector

Measured v_{μ} CC events

Neutrino Event Topologies

Neutrino Event Topologies

To select v_e CC we focus on finding compact showers.

MC events

Signal

"Irreducible" Background

Reducible Background

Mayly Sanchez - ANL/ISU

ANL DOE Site Visit - Sept. 23-24, 2009

$\bar{\nu}_{\mu}$ disappearance in MINOS

- Plan to reverse horn current in NuMI magnetic horns from Sept '09.
- MINOS can directly observe $\overline{\mathbf{v}}_{\mu}$ disappearance at the 7 $\boldsymbol{\sigma}$ level with 5 x 10²⁰ POT.

♦ First direct observation of $\overline{\nu}_{\mu}$ in an accelerator long baseline experiment.

Off-axis NuMI Beam

- Off-axis yields a narrow band beam. Peak sits just above oscillation maximum with 5 times the flux than on axis. High energy tail is suppressed.
- Upgrade neutrino beam intensity from 320kW to 700kW:
 - Use the recycler ring to store 12 batches while Main Injector ramps up.
 - Rate of Main Injector increases cycle time from 2.2 sec to 1.33 sec.

Off-axis NuMI Beam

- Beam performance:
 - 10 µsec spill every 1.3 sec.
 - 4.9 x 10¹³ POT/spill.
 - $\sim 3 \times 10^{18} \text{ POT/day} -> 6 \times 10^{20} \text{ POT/yr}.$
 - Running plan is 3 yrs v_{μ} and 3 yrs \overline{v}_{μ} .

Detector Elements

"Clam Shell"
Optical Housing

Carrier Board
w/ APD chip

Heat Sink
Interface

There are 11,160 detector modules for a total of 357,120 separated detector cells in the NOvA Far Detector.

- Each module is made of two high reflectivity PVC extrusions. Combined 12 module wide X or Y measuring planes.
- 12,500 km of 0.7 mm fiber, 3 M gallons of scintillator.

Scintillation Light

δ vs. θ_{13} Contours: Examples

95% CL Resolution of the Mass Ordering NOvA alone

Normal hierarchy

Inverted hierarchy

95% CL Resolution of the Mass Ordering NOvA + T2K

Normal hierarchy

Inverted hierarchy

95% CL Resolution of the θ_{23} ambiguity

- Ambiguity is resolved to the right and below the curves.
- Sensitivity depends on mass ordering, δ_{CP} , and the sign of the ambiguity.
- Curves represent average over parameters.

Proton plans

	Operating Conditions (May 2007)	Proton Plan Multi- batch Slip- stacking in MI	NOvA Multi-batch Slip-stacking in Recycler
8 GeV Intensity (p/Batch)	4.3 - 4.5x10 ¹²	4.3x10 ¹²	4.3x10 ¹²
Number of 8 GeV Batches to NuMI	7	11	12
MI Cycle Time (sec)	2.4	2.2	1.3
MI Intensity (protons per pulse or ppp)	3.3x10 ¹³	4.5x10 ¹³	4.9x10 ¹³
MI to NuMI (ppp)	2.45x10 ¹³	3.7x10 ¹³	4.9x10 ¹³
NuMI Beam Power (kW)	192	320	700
Protons/year to NuMI	2x10 ²⁰	3x10 ²⁰	6x10 ²⁰
MI Protons/hour	4.95x10 ¹⁶	7.3x10 ¹⁶	1.3x10 ¹⁷

Expected NuMI operating conditions for NOvA

NuMI operating conditions for MINOS through summer 2007

NuMI operating conditions for MINOS fall 2007 to present

NOvA Status and Plans

- NOvA has reached CD3a, CD3b is in the works.
- New budget is front loaded, new schedule reflects that:

- Assembly R&D effort is in progress.
- Prototype Near Detector (IPND) will be installed on the surface next year sitting far off axis of the MINOS beam.
- Far Detector site ground broken and building construction has started.

Assembly R&D Effort

- Construction of the Full Scale Assembly Prototype (FSAP) was just completed at Argonne:
 - Construction of 6 full size planes for time and motion studies and placement precision.
- Next will be the Full Height Engineering Prototype (FHEP) which will be mounted in the CDF building.

ANL DOE Site Visit - Sept. 23-24, 2009

Far Detector site

- Beneficial occupancy:
 - Assembly area July 2010.
 - Full building Nov 2010.

Expected Next Summer

• First 2.5 kT operational by Jan 2012. Full Far Detector operational mid-2013.

Two proposed detectors

- Liquid Argon TPC as alternative or complementary detector.
- Initial detector 60 kton, modules of 20kton each?
- R&D program in progress, largest detector to date: 0.6 kT.
- Staged approach: ArgoNeut, MicroBoone, 5kT.
- Goal near-perfect efficiency and purity.
- Reconstruction algorithms in development.

ArgoNeuT first neutrino event!

Fast Timing

- New Detector R&D Project
 - Collaboration between U of Chicago, 4 Divisions at Argonne, and several other Universities

Goal: provide cheap, large-area photo-detectors, with precision time resolution [O(1)-O(100) psec, depending on the application].

Based on Micro Channel Plate (MCP) technology

7/13/09

Matthew Wetstein - LBNE

Fast Timing

- MCP's are traditionally expensive. Dynode pore-structures micro-machined out of ceramics.
- Our strategy:
 - Use cheap, batch methods to produce pore-structure (glass filters, Anodized Aluminum Oxide)
 - Use ALD to coat the pores with the appropriate semi-conductor materials.
 - Build into large-area plates with fast, custom front-end electronics.

7/13/09

Matthew Wetstein - LBNE

Fast Timing

- Group velocity versus wavelength in GEANT...
- Problems with how GEANT approximates dn/dlogE

7/13/09

Matthew Wetstein - LBNE